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Abstract. In this paper we consider the equation of motion for a complex classical field in 
a (3  + 1)-dimensional b6 model. The resultant complex non-linear Klein-Gordon equation 
is solved using an ansatz in which the envelope satisfies a scalar non-linear Klein-Gordon 
equation and the carrier satisfies either a wave equation or Laplace’s equation with 
additional constraints. We use the results of the symmetry reduction method to exactly 
solve both the carrier equations and the envelope equation. The latter has recently been 
analysed and here we only briefly discuss the types of the appropriate solutions. However, 
we present a detailed discussion on one particular solution which is physically important. 
It bifurcates both in real space and in phase space. Possible physical applications have 
been outlined in the last section and they include superfluidity, superconductivity, liquid 
crystals and helicoidal metamagnets. 

1. Introduction 

The objective of this paper is to use the method of symmetry reduction for partial 
differential equations in order to find exact solutions of the equation of motion for 
the complex order-parameter field 4 that corresponds to the Lagrangian of equation 
(1) given below, We intend to present and analyse certain classes of exact solutions 
which are invariant with respect to subgroups of the symmetry group of the equation 
of motion. In particular, we shall discuss in detail a bifurcating solution which reflects 
the phenomenon of symmetry breaking taking place in the system. The aim of this 
paper is not a complete presentation of all solutions obtained using this method (this 
will be done elsewhere) but an analysis of some special, physically interesting solutions. 

(1) 

Consider the following classical Lagrangian density: 

2’=$fm4,4: - fD(Vc$)(V4*)  - A*&$* - A 4 ( 4 ~ $ * ) ~  - As(+4*)3 
where 4 is a complex order-parameter field and 4 = 4(  t ,  x).  This type of Lagrangian 
density leads to the Hamiltonian 

which is typical of Landau-Ginzburg models of critical phenomena (Landau and 
Lifshitz 1980, Amit 1978) with complex (two-component) order parameters, as, e.g., 
in superconductors, superfluids or metamagnets. Following Landau, A2 changes sign 
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according to A, = a(  T - T,). If A,> 0, the resulting phase transition is of second order 
and takes place at T,. If A,<O, the transition is of first order and takes place at 
TT = T,+ A:/4aA6. In both cases A, > 0. For A, < 0 the coexistence range is T, 
T,* T, + Ai13 aA6. 

As shown in figure 1, this Lagrangian's stable state may either be non-degenerate 
(a)  or doubly degenerate (b) or triply degenerate (c). Intermediate situations are also 
possible with metastable states lying above the ground state (d and e) which may be 
either degenerate or not. Figure 1 just shows the projection of V =  
A2&$*+A,(&b*)2+AA,(&b*)3 on the plane of 4 = c$*. The various potential forms 
of figure 1 correspond to different conditions imposed on A, and A., (see figure 2). 
On the left-hand side of figure 2 we have divided the neighbourhood of the origin of 
the A,A,-phase diagram into regions corresponding to the potential forms of figure 
1. The origin of the diagram represents a tricritical point A> = A4 = 0 (Aharony 1983) 
and it can be approached from each of the five regions in a different way. At the 

T 

Figure 1. The five possible forms of the nonlinear potential V ( &  b*) when C#J = C#J* and 
A 4 < 0 .  a, T >  T8;  b, T <  7,; c, T =  T,*; d ,  T y <  T <  To*; e, T,< T<r T:. I f  A,>0, then 
a takes place when T:> T, and b when T S  7,. 

Figure 2. A continuous mapping of the neighbourhood of the origin on the A2A4 phase 
diagram onto the neighbourhood of the tricritical point on the PT phase diagram. - - -, 
line of first-order phase transitions; -, line of second-order phase transitions, ' . . ' , 
boundary of the coexistence region. 
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tricritical point an infinitesimal perturbation may destabilise the system and cause it 
to fall into either one of the five regions. 

On crossing from region a to b the system undergoes a second-order phase transition 
whose line is given by A2 = 0 and A,> 0. On crossing from region d to e the system 
undergoes a first-order transition whose line is the half-parabola A* = A:/4A6; A,< 0. 
The coexistence region is bounded by the half-parabola A2 = Ai/3A6; A,< 0 and  the 
half-line A2 = 0; A, < 0. The thermal hysteresis present here means that the metastable 
disordered phase exists up  to the negative-A, half-axis on going in a clockwise direction 
while the metastable ordered phase exists u p  to the A2 = A:/3aA6 parabola on going 
in the anticlockwise direction. Since A2 depends only on the temperature T (provided 
T is sufficiently close to T,) and A ,  depends only on the thermodynamic force (e.g., 
pressure P or  magnetic field), then this generic situation represented on the AzA4 
diagram for each particular physical system can be uniquely mapped onto the PT 
phase diagram. Although A, = A4( P )  in a way characteristic of the given system, it is 
always sufficiently smooth close to the tricritical point ( T T ,  P,") for a continuous map 
from (A2 ,  A,) to (T, P )  to be isomorphic in the neighbourhood of the tricritical point. 

A transformation which leaves the Lagrangian invariant but does not preserve its 
solution is called spontaneous symmetry breaking. The Lagrangian 3' of equation (1) 
is invariant with respect to the sign reversal of the fields 4 and 4 *  (which may result 
from, e.g., parity os time reversal). The associated stable homogeneous solution 4 
experiences a bifurcation as is shown in figure 3 (with 4 = 4*)  in two distinct cases: 
A,>O (figure 3(a) )  and A,<O (figure 3 ( b ) ) .  In figure 3, 4+ and 4- denote the two 

Figure 3. The two types of bifurcations for d as a function of temperature when 4 = d* 
( ( a )  A,>0,  ( b )  A,<O).  The full curves indicate reversible processes for stable phases 
and the broken lines indicate irreversible processes for metastable phases.  

branches of 4 for 4 # 0 and  <bo = 0, full curves indicate absolutely stable solutions, 
broken lines indicate metastable solutions and arrows indicate the direction of path 
along the temperature axis. Since A4 < 0 corresponds to a first-order phase transition, 
the temperature hysteresis of the solution shown in figure 3(b) is understandable. It 
should be noted that at the tricritical point T,* + T $  -+ T,,  and hence figure 3 ( b )  becomes 
identical with figure 3 ( a ) .  In the general case when 4 is independent of $I* the sign 
reversal can be considered a phase rotation by a n  angle *T.  In  fact, any phase rotation 
(I, + (I, + S(I, where 

4 = t7 exp(i4) ( 3 )  
is an invariance transformation for the Lagrangian 2 of equation ( l ) ,  as shown 
schematically in figure 4. This also means that the vacuum state of the system is 
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Figure 4. Schematic illustration of the rotational invariance of the potential V (  4, @*). We 
use the notation: 4 = @r + i d , .  

infinitely degenerate. In all cases, however, the broken symmetry of the Lagrangian 
results in bifurcations of the stable solution. 

2. The equation of motion 

Using the Euler-Lagrange equation 

we readily obtain the fundamental equation of motion for the complex order-parameter 
field 4 in the form of a non-linear Klein-Gordon equation: 

0 &J = -2[AZ + 2A444* + 3A,( 4d*)2]4 ( 5 )  

where 

is the Laplace-Beltrami operator, E = -sgn(D), xo= m-’l2r and (x,, x2, x3) = 
IDI-’/2(x, y, 2) .  We then use the polar representation of equation ( 3 )  for 4 where r] is 
called the envelope and $ the carrier wave and both of them are real functions of 
(x,, xl, x2, x3). Substituting the polar form of 4 given by ( 3 )  into ( 5 )  and separating 
the real and imaginary parts yields the following equivalent system of partial differential 
equations (PDE) for r] and 4: 

( 6 )  0 , ~  - ( V $  lC$)v = -2(A2+2A4v2+3A6v4)v 

2(Vr ] IV$)+  TO,$ = o  ( 7 )  

where V = (a/dxo, a/ax,, a/ax,, alax,) is the ( 3  + 1)-dimensional gradient operator and 
( x l y )  = xoyo+ E Z;=, x,y, is a scalar product defined with respect to the signature. 

We intend to solve the system of equations (6) and ( 7 )  by effectively decoupling 
them through the imposition of the ansatz 

( v $ I v ~ L ) = ~ + P ~ ~ + ~ ~ ~  (8) 
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where a, @ and y are adjustable parameters. This yields the equation for the envelope 
in the form of a non-linear Klein-Gordon equation: 

U,T = -2(u2T+2a4~3+3a6f75)  (9) 

where u2 =fa + A 2 ,  a4 = $@ + A4 and a6 = i y  + A6. Then the carrier wave must satisfy 
an overdetermined system of equations: 

O,*=O (VTIV4.f)=O (10) 

together with equation (8). A systematic analysis of solutions of these equations from 
the viewpoint of the symmetry groups can be obtained using the symmetry reduction 
method (Ibragimov 1985, Olver 1986, Ovsiannikov 1982, Sattinger and Weaver 1986, 
Grundland et a1 1984). 

Here, we only concern ourselves with the case where the PDE (9) can be reduced 
to an ODE. The method used consists essentially of four steps (for details see Winternitz 
et a1 1987). 

(i) Find the symmetry group G of equation (9) and its Lie algebra L. It has been 
proved that in Minkowski and Euclidean spaces equation (9) is invariant with respect 
to the PoincarC group P(3, 1) and the Euclidean group E(4), respectively. In the special 
case when the coefficients a 2 = a 4 = 0 ,  the symmetry group of equation (9) is even 
larger. In four-dimensional space the equation is invariant with respect to the similitude 
group, i.e. PoincarC P(3, 1) or Euclidean E(4) extended by dilations which are denoted 
by Sim(3, 1) and Sim(4), respectively. In three-dimensional space when a, = a4 = 0, 
the symmetry group of equation (9)  also contains conformal transformations 2nd is 
denoted by Conf(2, 1) and Conf(3). This group is locally isomorphic to the de Sitter 
groups 0 ( 3 , 2 )  and O(4, l) ,  respectively. 

(i i)  Find all subalgebras L,CL and all subgroups G,CG having generic orbits of 
codimension one in the space of independent variables (x”). The relevant classification 
of subgroups was made by Patera et a1 (1977). 

(iii) Find the invariants of each subgroup G,  in the space of independent and 
dependent variables (x*, C#J), i.e. find the first integrals of the system of first-order PDE: 

X , H ( x ,  4 )  = 0 I s a s k  (11) 

where { X , ,  . . . , X k }  is a basis of the given subalgebras L, and X ,  are linear first-order 
operators. Various subgroups allow us to construct different solutions of the form 

= p ( x ) F ( S ( x ) )  (12) 
where p and 6 are functions of x given by the symmetry of the problem, and F is a 
function of 6 only, which is subject to the reduced ODE. Passing systematically through 
all subalgebras G, we obtain all so-called symmetry variables 6 and the corresponding 
ODE for F. 

( iv )  Find the solutions of each ODE. These ODE can often be explicitly integrated 
in terms of known functions, or at least, their singularity structure can be investigated 
using well known methods. 

3. Solutions of the equation of motion 

3.1. The carrier wave 

In this section we intend to obtain solutions to the system of equations for the carrier 
wave, equations (8) and (10). 
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First of all, it is easy to see that a simple way of satisfying these conditions on rl, 
is to set p = y = O  in (8) and to demand that 77 and rl, depend on different sets of 
independent variables. This means that we have the following three cases: ( i )  rl, = r l , (x , )  
and 7) = ~ ( x , ,  xh, x , ) ;  (ii) rl, = rl,(x,, x,) and 77 = ~ ( x A ,  x , ) ;  (iii) rl, = ccl(x,, x,, x A )  and 
77 = ~ ( x , ) .  In each case ( x , ,  x,, xk, x , )  are supposed to exhaust all inequivalent permuta- 
tions of the independent variables ( x o ,  x I r  x 2 ,  x 3 ) .  This results in two general types of 
equations for the carrier wave: either the Laplace equation or the wave equation. 
Depending on whether we deal with case (i), (ii) or (iii) these are one-, two- or 
three-dimensional PDE. We now discuss explicit solutions of these equations subject 
to the constraint of (8) with p = y=O. 

(i) In one-dimensional cases we have 

+ ( x , ) = G x , + ( Y o  (13) 

(ii) In two-dimensional cases the solutions of the resultant Laplace equation are 
where E = *1 and a. is an integration constant. 

rl , (x, ,  x , ) = f l ( x l + i X , ) + f 2 ( x ,  -ix,) (14) 
where f l  and f 2  are arbitrary twice differentiable functions which are related via 

If the resultant equation is a two-dimensional wave equation, then the solution for rl, 
is the well known d’Alembert solution 

(16) 
where f, and f 2  are of the same class as before and they are also related through 
equation ( 15). 

(iii) In three-dimensional cases the solutions of the resultant Laplace equation 
with this constraint can only be of translation-wave form (see Cieciura and Grundland 
1984), i.e. 

+ ( x i ,  x j )  = f i ( x i  + x j )  + f i ( x i  - XI 

where pa,  v, are constants. The (2+1)-dimensional wave equation subject to this 
constraint admits a much more interesting class of solutions, namely (see Grundland 
et a1 1984) 

(18) 
where g is an arbitrary function. This solution is related to the so-called degenerate 
symmetry variables existing in M(2, 1). 

We may now return to the original equations (8) and (10) and relax the condition 
that p = y = 0. The following analysis is based on the symmetry reduction method and, 
in particular, on the results published by Grundland et a1 (1984) for subgroups of 
codimension 2. Suppose that 

77 = 77(51(.x)I CL = $ ( & ( X I ) .  (19) 

We then wish to find the conditions and the form of 5, and e2 so that 77 and $ satisfy 
equations (8)-( 10). First of all 

rl,(xo, x,, X k )  = Xk + g ( x o + x , )  

‘3 , r l ,=(o52~~‘sz~r l , ”+~[7 l , ‘s~)~ ’=o (20) 
which can be satisfied if C,& = O  and ( C t 2 / V & )  = E n z O  A,,&; where A, are constants. 



Classical complex 45 field theory 6249 

Provided at least one of the coefficients A,, is non-zero, we immediately obtain the 
form of as 

* = p 5 2 + v  (21) 

where p and Y are constants. Another possibility arises when 
together with An = 0, n 2 1. This leads to 

= f ( t 2 )  and ho # 0 

where c1 and c2 are integration constants. In particular, if f ( t2)  = S2/C2, then 

* = c 1 2  5 ’ - W o +  c2 if 6,/ A. f 1 (23) 

or 

I(, = cl In t2 + c2 if & / A o =  1. (24) 

Secondly, 

(V771V+)= 77’*’(VS,IV52)=0 (25) 

( ~ t c ,  I v + )  = +‘*(V52 lV52) = p2 C A n t ;  

which can obviously be satisfied if ( V t l  lV&) = 0. Thirdly, 

n = O  

= a + P T ~ ( ~ ~ ) +  ~ 7 7 ~ ( ( 5 ~ ) .  (26) 

If p = y = 0, then the above condition does not constrain the form of the functional 
dependence of 77 on t1 and it leads to A,, = 0, n 3 1 and p2Ao = a. If, on the other 
hand, /? # O  or y Z 0 ,  then this necessarily is followed by 77 =Ip / (A2/p)”2 ,  y =  
h 4 P 2 / h : p 2  and A I  = h3 = 0. Finally, 

can be satisfied if 0,51=0 and ( V ( I I V 5 1 ) = w  where w is a constant. In this case 
equation (27) can be directly integrated to yield 

77’2 = ( - 1/  w ) (a ,  v2  + a4V4 + a6T6) (28) 

provided w # 0. This leads to a very large class of solutions in tefms of elementary 
and elliptic functions. For an exhaustive analysis the reader is referred to the paper 
of Winternitz er a f  (1987). If, however, w = 0, then O c t l  is not necessarily zero, but 
an arbitrary function of Cl : U,& = g(5, ) .  Then 

J J 

yielding an explicit form of 77 = ~ ( 5 , ) .  If ,  in particular, g ( & )  = S, / ( t l  +to), then 

(30) 
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where A a: - 3a2a, and 

ifA.>O 

To summarise, we have been looking for 77 = 77(t1), CC, = $(&) and &, t2 such that 
the following equations for the symmetry variables are satisfied: 

0 5 1  = 81/51 0 5 2  = 821 5 2  (32) 

( V t 1 I V t 2 ) = 0  (330) 

( V 5 1 / ~ 5 1 ) = w  (336) 

If & = O ,  then +(&) is given by equation (21), otherwise CC, is given by (23) and (24). 
If 6l  =0,  then ~ ( 5 , )  is given by equation (28), otherwise 7 is given implicitly by (30). 
We have analysed table IV of Grundland et a1 (1984) for codimension-2 symmetry 
variables in M(3, 1) and  selected the appropriate entries that satisfy our equation (33). 
It was easy to supplement it with the relevant solutions in E(4). These results are 
summarised in table 1. Obviously, the spatial variables x, , x2 and x3 are entirely 
equivalent, hence they can be permuted amongst themselves in the definitions of t1 
and t2 leading to a larger number of possibilities than just those shown in table 1. 
Most of the entries in table 1 (all except for numbers I1 10, 11, 12, 27) list and t2 
which depend on different sets of variables and have already been recognised. In most 
cases w Z 0 and  hence the envelope 7 is to be found from equation (28). The other 
possibility, w = 0, is present only in numbers I1 4, 17, 27 and it leads to 7 given by 
equation (30). Finally, only numbers I1 12 and  I1 27 have a non-zero A ,  where i > 0. 

Having discussed the carrier wave equation and its solutions we now turn to the 
envelope equation, equation (9). 

3.2. The envelope 

The non-linear Klein-Gordon equation, equation (9), written for a scalar field 7 has 
recently been extensively studied by Winternitz er a1 (1987). A large number of new 
exact solutions have been found using the method of symmetry reduction in ( 3 +  
1)-dimensional Euclidean ( E  = +1) or Minkowski ( E  = -1) space of independent vari- 
ables. In  order to adapt the obtained results to the present situation we must include 
the solutions 77 which either depend on an incomplete set of variables: ~ ( x , ) ,  ~ ( x , ,  x,), 
~ ( x , ,  x,, xk), or  depend on the symmetry variables tl, t2 of table 1. 

In the Euclidean case when a, and a4 are not simultaneously equal to zero the 
symmetry variables of the envelope can only be given by 

[=(x;+x:+. . . + X I ) '  k = 0 ,  1 , 2  

which corresponds to space-independent and time-dependent solutions ( k  = O ) ,  rec- 
tilinear propagation ( k  = 1) and cylindrical propagation ( k  = 2 ) .  
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In the Minkowski case when a2 and a4 are not simultaneously equal to zero the 
symmetry variables of the envelope involve a larger number of choices, namely 

k = = 0 , 1 , 2  ~ = ( x o - x 1 - . . . - x ; ) 1 ’ 2  2 2  

5=(x:+x:+.. .+x;+l)1!2 k = 0 ,  1 ,2  

[ = x , + p  ln(x,+x,) 

[ = X] +i(x,+ X2)* 

5 = XI + 4(xo + $1 
and a degenerate variable of the form 

where 4 is an arbitrary function, which is a generalisation of the last two cases. The 
profiles of the corresponding solutions in both Minkowski and Euclidean cases include 
constant solutions (mean fields), singular solutions with one and with two singularities 
(defect structures), kinks (domain walls), bumps (nucleation centres) and Jacobi elliptic 
functions (elementary excitations). For analytical forms of these functions the reader 
is referred to the paper of Winternitz er a1 (1987). 

When a, = a4 = 0, the solutions obtained differ significantly from the previous cases. 
A large number of algebraic, trigonometric, hyperbolic and Jacobi elliptic solutions 
have been found which possess interesting propagation properties and singularity 
structures. The relevant symmetry variables of the envelope lead to unusual surfaces 
of constant phase such as ellipsoids, hyperboloids and helicoidal surfaces which may 
be useful in physical applications. The singularity structures exhibit various nucleation 
effects involving, for example, point and line defects growing to become spherical and 
cylindrical defects, respectively. 

4. A bifurcating solution 

In this section we intend to present and analyse a particular exact solution of the 
envelope equation, equation (9), which is physically interesting as an example of 
bifurcating solution. Its explicit form is 

where 

zk = cosh[tan-’(x2/xI -A,)+Zk.ir] 

=cos [ In( 1 -i(x2/x1-Ao) ) +2ika ]  
1 +i(x2/x,  -A, )  (35) 

with k =0,  *1, 1 2 , .  . . and A, being a complex integration constant. From § 3.1 the 
corresponding carrier wave is 

44 x, 7 x3) = fl (xo + \ G X 3 )  +fA xo - A x 3 1  

withf, and f2 related through equation ( 1 5 )  and E = -sgn(D). The envelope function 
of equation ( 3 5 )  exhibits interesting bifurcation properties which we now discuss in 
detail. Notice first that the function In( ) is a univalent analytical function in a simply 
connected region which does not contain the origin and infinity. At the origin and at 
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infinity it has branching points of infinite order. Every branch of the logarithm differs 
by Zkxi, so we denote each branch as 7 ) k .  To determine this function in the entire 
complex plane 

1 -i(x2/x,  - A o )  
1+i(x2/xl-Ao) 

Z E  

a cut along any line joining the origin and infinity is introduced. Thus the function 
In( ) has bifurcation points of infinite order whenever 

x2/xl - A o *  i = 0. 

This means that the solution V k  bifurcates for 

x2 = xl  Re A. I m A o = * l .  (36) 

Similarly, the function J( 1 is a univalent analytical function in a simply connected 
region which does not contain the origin and infinity. At the origin and at infinity it 
has bifurcation points of second order. The two branches of the square root differ 
only by the sign. To examine this function in the entire complex plane 

w ( z k  $. 1 )/ ( z k  - 2) 

a cut along any line joining the origin and infinity is introduced. Thus the function 
J w  has bifurcation points of second order whenever zk + 1 = 0. This means that the 
solution v k  bifurcates for 

x2 = x, Re A. (37) 

where E, = e x p [ 2 ~ (  1 + 21)]. Moreover, the solution given by equation (34) has simple 
poles at either xI  = x2 = 0 or zk - 2 = 0. Therefore T]k  diverges for 

x , = x , = o  or x2 = x,(3.85 + Re A o )  ImAo=O. (38) 

In order to facilitate physical interpretation of the properties of this solution, it is 
convenient to represent equation (34) in polar form as 

Im A. = ( 1 - E,)/  ( 1 + E,) 

f7n.k = P n , k  exp(i(ln,k) (39) 

where the amplitude is given by 

and the phase is given by 

-3 sin I sinh R 
-sin2 I cosh 2R + sinh2 R -cos I cosh R 

( l n , k  = + x ( n  +4) + f tan-’ 

where n = 0, 1, 2, 3 and we have denoted 

x2/.‘c, -Re A. 
(x2/xI  -Re A,)’+ (Im 1 

R = 2 k x +  

and 

I = - i l n (  -4 Im A. 
( X , / X , - R ~ A , ) ’ + ( I ~ A , ) ~ + ~  ImAo+l  (43) 
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Note that the new index n is used to label the four values of the fourth root of -1, 
i.e. exp[if.rr(n ++)I .  

In a similar way, we can introduce polar notation in the (x2,  xi) plane. Denoting 

r2  = x: + x i  tan a = x2/xI - A. (44) 

we can express 7 n . k  equivalently as 

7 n . k  = e x p [ i h ( n  + f ) ] ( 8 a 6 r  (45) 

From equation (37 )  the angle at which 7 bifurcates is 

ab = tan-'( Re A,) + ( 2 1  + 1 ) ~  

a k = tan-' (3.85 + Re A o )  + (21 + 1 ) T ,  

(46) 

while from equation (38) the angle at which 7 diverges is 

(47) 

It is now obvious that both the amplitude of the solution p and its phase $ depend 
on the polar angle a in the space of independent variables (x i ,  xJ. In the regions 
where 7 is analytical, i.e. for a f ab, a f a k ,  we can uniquely represent the amplitude 
and the phase as functions of a :  

P n , k  = P n , k ( a  1 4 n . k  = $ n , k ( a ) *  (48) 

Moreover, the converse is also true: we can write the polar angle a in a unique way 
as a function of the phase $, a = for each interval where 7 n . k  is analytical. 
One can obtain an explicit formula for this function by solving a quartic equation in 
terms of exp(R)  and express 7 as 

7n. k = Pn.k [a ( 4 n . k  ) I  exp[ia ( $n,k 1. (49) 

This represents the solution, equation (34), in a polar form analogous to that of equation 
(48), i.e. where the amplitude and the phase are expressed in terms of dependent 
variables. A rotation of $ by S$, as argued before, is an invariance transformation 
for the Lagrangian. As shown in equation (49), this is definitely not an  invariance 
transformation for the solution. In  the regions where 7 , , k  is analytic both the phase 
and the amplitude change continuously with the rotation of the polar angle a. At the 
bifurcation angles ab, however, both the phase (Ln,k and the amplitude p n , k  are multi- 
valued functions. Since both $n,k and p,,,k depend on a through hyperbolic functions 
(see equations (40)-(43)),  a shift to another branch caused by a 2 d  rotation in the 
(x,  , x2) plane produces an  essentially different function $ n , k + , .  

The bifurcation phenomenon which we have described for the particular solution 
f7n.k of equation (34) can now be compared with the general picture shown in figure 
3 for an  arbitrary solution. This has been illustrated in figure 5. Whereas the 
homogeneous field 9 bifurcates at the critical temperature T,,  resulting in a phase- 
rotation degeneracy (with a non-denumerable number of equivalent states), our solution 
of equation (34) which exists at a fixed temperature T,* bifurcates as a result of the 
rotation in the ( x , ,  x2) plane (with a denumerable number of equivalent states). The 
broken symmetry of the Lagrangian is not only the phase-rotation symmetry but also 
the spatial rotation symmetry. The latter is much less obvious than the former. 
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Figure 5. Schematic illustration of the analogy between bifurcations of the general solution 
6 and the particular solution T , , ~  of equation (34). Broken symmetry: ( a )  phase rotation, 
( b )  spatial rotation. 

The mapping between the real (physical) space and the order-parameter space is 
of crucial importance to the theory of defect structures (singularities in the phase 
space) (Anderson 1984). A defect or a singularity is allowed to exist since the order 
parameter may assume its equilibrium value everywhere except possibly in a region 
which is of a topologically lower dimension than that of real space. For example, 
point, line and plane defects are allowed in three-dimensional space. Thus equation 
(34), which represents a plane singularity, can be considered a legitimate defect 
structure in three-dimensional space. 

It should also be noted that as a result of the relationship between the coefficients 
a2 ,  a, and a6 of equation (9) and the coefficients A2,  A, and A6 of equation ( l) ,  the 
temperature range of existence of solitary-wave envelopes (see 0 3.2) may be sig- 
nificantly altered. Consequently, some solutions which for real $I are confined to a 
certain temperature, e.g. the tricritical temperature, may for complex 4 exist also at 
other temperatures in its neighbourhood provided a # 0 or p f 0. This would be an 
indication of the influence of the carrier wave on the envelope. 

Finally, it is of interest to examine the structural stability conditions for the solutions 
obtained using the Lagrangian of equation (1) or, alternatively, the Hamiltonian of 
equation (2). The solutions listed here have been derived so as to extremise the 
Hamiltonian functional, i.e. SH = 0. They will correspond to local minima of this 
functional if and only if the second variation of H is positive, i.e. for S 2 H > 0 .  
Assuming, as we have done before, that the form of 4 is $I = T ( & )  exp[i$(&)] and 
utilising the definitions of xo and x I  , x 2 ,  x 3 ,  we readily find the resultant conditions 
for the quadratic form in the second variation to be positive definite as 

These two inequalities must be satisfied simultaneously by and S2 in order for $I to 
correspond to a local minimum of H .  I t  is easy to see that all possible combinations 
of & and S2 satisfy equation (50) in the Minkowski case M(3, 1) since there D>O. 
Using table 1 we also find that no solutions in the Euclidean case E(4) are capable of 
satisfying equation (50 ) .  We therefore conclude that for D < 0 the solutions obtained 
in this paper are unstable. 
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5. Possible applications 

In this section we briefly describe possible applications of the presented model to 
several critical phenomena. The model calls for the use of a complex order parameter 
and hence qualifies as a description of, for example, the superfluid-viscous fluid phase 
transition, the superconducting-normal metal phase transition, the cholesteric-nematic 
liquid crystal phase transition, or the transitions involving helicoidal magnetic struc- 
tures, Rather than use the microscopic Lagrangian density of equation (1) or its 
corresponding Hamiltonian density (the Landau-Ginzburg- Wilson Hamiltonian), it 
has been customary to make physical applications of the 44 or  46 models based on 
a related phenomenological free energy density. Its form is usually adopted as (White 
and Geballe 1979, Luban 1976) 

F = A2i412 + A414I4+ A6l4I6 + iDlv41’. (51) 

This type of series expansion neglects kinetic effects by dropping the term $qb?. This 
aspect has recently been pointed out by Pippard (1987) who found important reper- 
cussions for entropy calculations, especially in finite-size systems. The equation of 
motion (the Euler equation) for 4 can be derived by setting the functional derivative 
of F to zero, 6 F / 6 4 *  = 0, which yields 

(52) A24 +2A414124 +3A6l4I44 -iDA4 = o  
and has the form of our equation (4) in three-dimensional Euclidean space. If one 
followed the advice of Pippard (1987) and included the kinetic energy, the agreement 
between the two approaches would be perfect. The approach based on the Hamiltonian 
or Lagrangian density so far has been mostly adopted in field theory (Jackiw 1977) 
while free-energy expansions have been widely used in various areas of condensed 
matter physics. 

In  the remainder of this section we shall briefly discuss several prominent physical 
systems to which the free-energy expansion of equation (51) has been applied in the 
past. The inclusion of the sixth-order term allows us to embrace both second- and  
first-order transitions using the same potential energy form. 

5.1. Superfluidity 

The A transition of liquid 4He is described (Luban 1976) using the so-called Ginzburg- 
Pitaevskii thermodynamic potential which is of the form of equation (51) where: 
A2 = a (  T -  Tc) ,  A, = i b  and D = h’/2m with m denoting the mass of the 4He atom. 
The order parameter 4 = 7 exp(i$) is the effective wavefunction of the superfluid 
component, and the superfluid mass density is ps = mq’. In order to obtain the correct 
scaling of p s ,  Mamaladze (1967) postulated that 

A - L  2 1 3  A 2 =  a s g n ( ~ ) l e l ~  3+$” 4 -  d l E I  

where c, is the critical velocity and E = ( T  - Tc)/  T,. 

5.2. Superconductivity 

In this case the Ginzburg-Landau model adopts equation (51) with D =  h 2 / 2 m *  and 
the order parameter is chosen to be the superconducting wavefunction @ ( r )  (or the 
pair potential A ( r ) ) .  Its square is the density of superconducting electrons n , ( r )  = 
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l@(r)12. The superconducting coherence length 5 is proportional to It can 
also be found (White and Geballe 1979) that the superconducting current density j s  
in the absence of external magnetic fields is proportional to the density of superconduct- 
ing electrons and the gradient of the phase, i.e. 

where e* is the effective electron charge, m* is the effective electron mass and h is 
Planck’s constant. Hence, based on 0 3.1 we would find various superconducting 
currents for different choices of the carrier wave 4. The bifurcating solution of equation 
(34) can be interpreted as a planar distribution of superconducting electrons with a 
field surrounding it. 

5.3. Liquid crystals 

Here, the order parameter can be chosen as an ordering tensor S u ( r )  (see, e.g., Warner 
1984) which is characterised both by its magnitude and direction. The free energy 
analogous to equation (51) has been used for liquid crystals by Haken (1974). The 
fundamental equation of motion of the type given by equation (52) has been used in 
the past in this context (Warner 1984, Guyon 1975, Lei er a1 1985). Our bifurcating 
solution, equation (34), fits particularly well as a layered, spontaneously twisted 
helicoidal structure arising during a nematic-cholesteric phase transition. The nematic 
liquid crystal is an anisotropic fluid made of rod-like molecules aligned along one 
direction without the centres of gravity of the molecules being ordered. A cholesteric 
phase has no mirror symmetry but has local nematic order. On a large scale, the order 
parameter forms layered structures (de Gennes 1974). 

5.4. Helicoidal metamagnets 

Helicoidal metamagnets (Herpin and Mtriel 1961) can be considered defect structures 
with respect to a homogeneous distribution of the magnetisation field which plays the 
role of an order parameter. They consist of a layered distribution of parallel planes 
of magnetisation. The orientation of the magnetisation vector in each plane is shifted 
with respect to its neighbours by a constant angle. In the continuum limit, the 
free-energy density, equation (51), is a suitable choice for these structures provided 
we interpret 4 as 

4 = 77 eilL t7 = ( M : +  M;)l’2 $ = tan-’(M*/M,) 

and the magnetisation vector in each layer is M = fM, +y*Mz, The inhomogeneity 
parameter D here equals (White and Geballe 1979) D = z S 2 J d 2 / 6 V o M ~  where z is the 
number of neighbouring sites, S is the magnitude of the spin, d is the mean distance 
between sites, J is the interatomic exchange integral, V, is the unit volume and MO is 
the saturation magnetisation. Then the bifurcating solution, equation (34), describes 
the creation of a helicoidal magnetic structure out of a single plane impurity. 
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